Os algarismos significativos são os algarismos que têm importância na exatidão de um número, por exemplo, o número 2,67 tem três algarismos significativos. Se expressarmos o número como 2,6700 , entretanto, temos cinco algarismos significativos, pois os zeros à direita dão maior exatidão para o número. Os exemplos abaixo têm 4 algarismos significativos:
56,00
0,2301
00000,00001000
1034
Números que contenham potência de dez (notação científica por exemplo), serão algarismos significativos tudo, exceto a própria potência, veja por quê:
785,4 = 7,854 x 102
Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos.
Zeros à esquerda não são algarismos significativos, como em:
000000000003 -> apenas um algarismo significativo
Algarismos duvidosos
Ao realizar a medição de algum objeto, nunca teremos a medida exata do objeto, utilizando uma régua, por mais precisa que seja. Isso porquê o último algarismo dessa medição, será duvidoso.
Uma regua comum tem divisões de centímetros e milímetros. Ao medir um lápis, por exemplo, nota-se que o comprimento dele tem 13,5 cm, pois aparentemente ele fica em cima dessa medida. Porém não podemos ter certeza quanto ao algarismo 5 desse número. Poderia ser 13,49 ou 13,51. Então este último algarismo é chamado de duvidoso, e representamos com um traço em cima: 13,5.
Em qualquer número, o algarismo duvidoso será o último algarismo significativo, contando da esquerda para direita.
9,9999998 = o algarismo duvidoso é o 8
14,79234320 = o algarismo duvidoso é o 0
1,00000 = o algarismo duvidoso é o último zero
Texto originalmente publicado em https://www.infoescola.com/matematica/algarismos-significativos-algarismos-duvidosos/