Lista de questões de vestibulares sobre o tema Dualidade Onda-Partícula. Ler artigo Dualidade onda-partícula.
A natureza da luz é um tema que ocupa os estudiosos desde a antiguidade. As teorias corpuscular e ondulatória buscam a preferência de cientistas famosos para explicar fenômenos importantes da ciência. No entanto, após o experimento da fenda dupla de Thomas Young, em 1802, e da explicação do efeito fotoelétrico realizada por Albert Einstein, em 1905, a ideia da dualidade onda/partícula da luz foi aceita pela comunidade científica. A experiência da fenda dupla consiste em fazer a luz passar por duas fendas em uma placa e observar o padrão de franjas (listras) claras e franjas (listras) escuras. Já o efeito fotoelétrico consiste em incidir luz sobre uma placa metálica para arrancar elétrons.
Considerando o que foi exposto acima, é correto afirmar que:
o efeito fotoelétrico foi explicado por Einstein pela teoria ondulatória da luz.
a formação do padrão de franjas claras e franjas escuras no experimento da fenda dupla de Young foi explicada pela teoria corpuscular da luz, em que as partículas da luz (fótons) sofrem o fenômeno de interferência.
no efeito fotoelétrico, para arrancar os elétrons da placa, a luz deve ser formada por partículas (fótons) com uma energia mínima que é proporcional à frequência da luz.
tanto a teoria corpuscular quanto a teoria ondulatória da luz explicam o padrão de franjas claras e franjas escuras no experimento da fenda dupla.
no experimento de Young, a obtenção do padrão de franjas claras e franjas escuras ocorre por meio do fenômeno de interferência construtiva e interferência destrutiva das ondas, logo a explicação do fenômeno é ondulatória.
os fenômenos de interferência e difração são mais bem representados pela teoria ondulatória da luz, enquanto que o fenômeno do efeito fotoelétrico é mais bem representado pela teoria corpuscular da luz.
As ondas eletromagnéticas, como a luz e as ondas de rádio, têm um “sério problema de identidade”. Em algumas situações apresentam-se como onda, em outras, apresentam-se como partícula, como no efeito fotoelétrico, em que são chamadas de fótons. Isto é o que chamamos de dualidade onda-partícula, uma das peculiaridades que encontramos no universo da Física e que nos leva à seguinte pergunta: “Afinal, a luz é onda ou partícula?”. O mesmo acontece com um feixe de elétrons, que pode se comportar ora como onda, ora como partícula.
Com base no que foi exposto, assinale a(s) proposição(ões) CORRETA(S).
Um feixe de elétrons incide sobre um obstáculo que possui duas fendas, atingindo um anteparo e formando a imagem apresentada na figura acima. A imagem indica que um feixe de elétrons possui um comportamento ondulatório, o que leva a concluir que a matéria também possui um caráter dualístico.
O fenômeno da difração só fica evidente quando o comprimento de onda é da ordem de grandeza da abertura da fenda.
O físico francês Louis de Broglie apresentou uma teoria ousada, baseada na seguinte hipótese: “se fótons apresentam características de onda e partícula [...], se elétrons são partículas mas também apresentam características ondulatórias, talvez todas as formas de matéria tenham características duais de onda e partícula”.
Admitindo que a massa do elétron seja 9,1.10-31 kg e que viaja com uma velocidade de 3.106 m/s, o comprimento de onda de De Broglie para o elétron em questão é 2,4.10-12 m.
Após a onda passar pela fenda dupla, as frentes de ondas geradas em cada fenda sofrem o fenômeno de interferência, que pode ser construtiva ou destrutiva. Desta forma, fica evidente o princípio de dependência de propagação de uma onda.
Christian Huygens, físico holandês, foi o primeiro a discutir o caráter dualístico da luz e, para tanto, propôs o experimento de fenda dupla.
O físico francês Louis de Broglie (1892-1987), em analogia ao comportamento dual onda-partícula da luz, atribuiu propriedades ondulatórias à matéria.
Sendo a constante de Planck h = 6,6x10-34 J.s, o comprimento de onda de Broglie para um elétron (massa m = 9x10-31 kg) com velocidade de módulo v = 2,2x106 m/s é, aproximadamente:
3,3 x 10-10 m.
3,3 x 10-9 m.
3,3 x 103 m.
3,0 x109 m.
3,0 x1010 m.