A trigonometria, palavra formada por três radicais gregos: tri (três), gonos (ângulos) e metron (medir), têm por objetivo o cálculo das medidas dos lados e ângulos de um triângulo.
Medir distâncias é uma necessidade antiga da humanidade, facilmente atendida no caso de envolver pontos próximos. Basta verificar quantas vezes uma dada unidade de medida está contida no comprimento a ser medido. Este é o princípio dos instrumentos mais comuns para medir comprimentos: réguas, fitas métricas, trenas, etc.
Por que estudar Trigonometria?
Há situações, em que se deseja efetuar medidas envolvendo objetos que não são diretamente acessíveis. Atualmente, a trigonometria não se limita apenas a estudar os triângulos. Sua aplicação se estende a outros campos da Matemática, como análise, e a outros campos da atividade humana, como a Eletricidade, a Mecânica, a Acústica, a Música, a Topologia, a Engenharia Civil etc.
Observem algumas situações:
- Você já parou para imaginar como os navegadores da antiguidade faziam para calcular a que distância da terra eles encontravam-se enquanto navegavam?
- Seria impossível medir a distância da Terra à Lua, porém com a trigonometria se torna simples.
- Um engenheiro precisa saber a largura de um rio para construir uma ponte, o trabalho dele é mais fácil quando ele usa dos recursos trigonométricos.
- Um cartógrafo (desenhista de mapas) precisa saber a altura de uma montanha, o comprimento de um rio, etc. Sem a trigonometria ele demoraria anos para desenhar um mapa.
Na Grécia antiga, entre os anos de 190 a.C. e 125 a.C., viveu Hiparco, um matemático que construiu a primeira tabela trigonométrica. Esse trabalho foi muito importante para o desenvolvimento da Astronomia, pois facilitava o cálculo de distâncias inacessíveis, o que lhe valeu o título de PAI DA TRIGONOMETRIA.
Leia mais:
Referências Bibliográficas
LIMA, Elon Lages; Carvalho, Paulo Cezar Pinto; WAGNER, Eduardo; MORGADO, Augusto César. Temas e problemas Elementares. Rio de Janeiro 2ª Ed. SBM, 2005.