A teoria dos orbitais moleculares (TOM) surgiu como mais uma ferramenta para explicar a formação das ligações químicas, assim como, teoria da ligação de valência, hibridização. Porém tem suas bases amparadas pelas funções de ondas advindas da mecânica quântica a qual ofereceu todo o respaldo para essa teoria.
Na verdade a TOM, simplesmente explica a existência do orbital na molécula, quando os orbitais atômicos (Aos) se unem eles desaparecem completamente originando 2 orbitais moleculares, o que da o direito a esta molécula de possuir uma nova configuração eletrônica. Um orbital é um lugar do espaço onde é provável que o elétron seja encontrado, sem dúvida esta é boa nova que nos trouxe a mecânica quântica, promovendo a combinação matemática das funções de onda dos AOs e como resultado obtém-se as novas funções de onda denominadas orbitais moleculares (MOs).
Uma dessas funções é de subtração e a outra de adição, visto que o resultado dessa combinação é igual a outras duas combinações podemos claramente dizer a função de onda adição fornece um MO ligante e a subtração fornece um MO antiligante são representados pelas letras gregas σ e π, este método de combinação é conhecido como LCAO (combinação linear de orbitais atômicos).
OM | Ler como | Caráter | Funções | Origem |
σ | Sigma | Ligante | Adição | Combinação de orbitais 1s e 2px |
σ* | Sigma asterisco | Antiligante | Subtração | Combinação de orbitais 1s e 2px |
π | Pi | Ligante | Adição | Combinação de orbitais 2py e 2pz |
π* | Pi asterisco | Antiligante | Subtração | Combinação de orbitais 2py e 2pz |
É necessário ter em mente que:
AO + AO = OM + OM*
Formação de OMs σs:
Formação de OMs σx:
Formação de OMs πy
Formação de OMs πz:
As figuras acima são representações dos orbitais moleculares formados a partir da sobreposição dos orbitais atômicos e demonstram que no momento em que ocorre a combinação são originados outros 2 orbitais moleculares. O OM antiligante é originado da função de onda de subtração e este desestabiliza a ligação em virtude de possuir maior energia e menor densidade eletrônica em seu núcleo, do que o orbital ligante que originado da função de onda adição possui energia e elevada densidade eletrônica promovendo a ligação.
É importante lembrar que essas representações fazem alusão às moléculas homonucleares, e toda vez que ocorrer a combinação de 2 AOs serão originados 2 OMs, sendo um ligante e outro antiligante. E evidentemente as figuras acima representam as energias relativas, e são repetidos propositalmente para mostrar que as sobreposições py-py e pz-pz são iguais, com difrença somente na orientação, acima de tudo mantendo a mesma energia.
Após a combinação o AOs deixam de existir tornando-se OMs, e por conseguinte os orbitais resultantes devem ser preenchido por spins da mesma maneira, que preenchemos orbitais aos quais estamos habituados, seguindo procedimento de Aufbau que orienta a distribuir por sequência e não aos pares em cada orbital.
A TOM é uma das teorias que mais obteve sucesso na explicação das ligações químicas, sendo ela quem provou que a molécula de oxigênio é paramagnética, em virtude de possuir dois elétrons desemparelhados nos orbitais antiligantes.
Outro aspecto importante nesta teoria reside na definição de ordem de ligação, que leva em conta o preenchimento do orbital σs*, que possuindo caráter antiligante impede a formação da molécula, em função de possuir energia maior do que σs ligante, anulando a força de atração entre os átomos. É definida pela equação abaixo:
Ordem de Ligação= (elétrons ligantes – elétrons antiligantes) / 2
Para melhor compreensão vamos utilizar a molécula de Neônio e Oxigênio:
Ne2: KK (σs)2 (σs*)² ( σx)² ( πy)² ( πz)² ( πy*)² ( πz*)² ( σx*)²
Como: O.L= (e – e*)/2
Logo: O.L.= (8 - 8)/2 = 0
Como a ordem de ligação é zero não existe ligação, evidentemente a molécula de neônio não existe, é utilizada somente como uma molécula hipotética. O que já muda completamente no caso do oxigênio.
O2: KK (σs)2 (σs*)² ( σx)² ( πy)² ( πz)² ( πy*)¹ ( πz*)¹
O.L.= (8 - 4)/2 = 2
Quando um MO ligante é ocupado pelos elétrons ele contribui para a estabilidade da molécula, porém quando o MO antiligante está ocupado ele contribui significativamente para que esta seja desestabilizada ou não exista. Para saber se uma molécula existe ou se é paramagnética basta utilizar o diagrama de população, e aplicar a equação de O.L. Para as moléculas heteronuclares (formadas por átomos difrentes utiliza-se a mesma idéia do TOM, por que no mais elas acabam por ter a mesma configuração das moléculas homonucleares(formadas por átomos iguais), assim como a configuração do CO2 é igual a do N2.
Bibliografia:
Russel, J. B. Química geral. São Paulo: Makron Books, 2004.
James Brady, Humiston Gerard E. QUÍMICA GERAL - 2ª EDIÇÃO.
Mahan, B. M. Química: um curso universitário. 4a ed. São Paulo: Edgard Blücher, 2003.
SHRIVER, DUWARD; ATKINS, PETER. Química inorgânica - 4ª edição. Porto Alegre, Bookman, 2008.
LEE, J.D.. Química inorgânica não tão concisa – tradução da 4ª edição inglesa. São Paulo, Edgard Blücher, 1996.